Fuel injection in diesel engines
Early fuel injection systems
The modern diesel engine is a combination of two inventors' creations. In all major aspects, it holds true to Diesel's original design, that of the fuel being ignited by compression at an extremely high pressure within the cylinder. However, nearly all present-day diesel engines use the so-called solid injection system invented by Herbert Akroyd Stuart, for his hot bulb engine (a compression-ignition engine that precedes the diesel engine and operates slightly differently). Solid injection is where the fuel is raised to extreme pressures by mechanical pumps and delivered to the combustion chamber by pressure-activated injectors in an almost solid-state jet. Diesel's original engine injected fuel with the assistance of compressed air, which atomised the fuel and forced it into the engine through a nozzle. This is called an air-blast injection. The size of the compressor needed to power such a system made early diesel engines very heavy and large for their power outputs, and the need to drive a compressor lowered power output even more. Early marine diesels often had smaller auxiliary engines whose sole purpose was to drive the compressors to supply air to the main engine's injector system. Such a system was too bulky and inefficient to be used for road-going automotive vehicles.
Solid injection systems are lighter, simpler, and allow for much higher RPMs, and so are universally used for automotive diesel engines. Air-blast systems provide very efficient combustion under low-speed, high-load conditions, especially when running on poor-quality fuels, so some large cathedral marine engines use this injection method. Air-blast injection also raises the fuel temperature during the injection process, so is sometimes known as hot-fuel injection. In contrast, solid injection is sometimes called cold-fuel injection.
Because the vast majority of diesel engines in service today use solid injection, the information below relates to that system.
Mechanical and electronic injection
Older engines make use of a mechanical fuel pump and valve assembly which is driven by the engine crankshaft, usually from the timing belt or chain. These engines use simple injectors which are basically very precise spring-loaded valves which will open and close at a specific fuel pressure. The pump assembly consists of a pump which pressurizes the fuel and a disc-shaped valve which rotates at half crankshaft speed. The valve has a single aperture to the pressurized fuel on one side, and one aperture for each injector on the other. As the engine turns, the valve discs will line up and deliver a burst of pressurized fuel to the injector at the cylinder about to enter its power stroke. The injector valve is forced open by the fuel pressure, and the diesel is injected until the valve rotates out of alignment and the fuel pressure to that injector is cut off. Engine speed is controlled by a third disc, which rotates only a few degrees and is controlled by the throttle lever. This disc alters the width of the aperture through which the fuel passes, and therefore how long the injectors are held open before the fuel supply is cut, which controls the amount of fuel injected.
Older diesel engines with mechanical injection pumps could be inadvertently run in reverse, albeit very inefficiently as witnessed by massive amounts of soot being ejected from the air intake. This was often a consequence of bump starting a vehicle using the wrong gear.
This contrasts with the more modern method of having a separate fuel pump (or set of pumps) which supplies fuel constantly at high pressure to each injector. Each injector then has a solenoid which is operated by an electronic control unit, which enables more accurate control of injector opening times that depend on other control conditions, such as engine speed and loading, resulting in better engine performance and fuel economy. This design is also mechanically simpler than the combined pump and valve design, making it generally more reliable, and less noisy, than its mechanical counterpart.
Both mechanical and electronic injection systems can be used in either direct or indirect injection configurations.
Indirect injection
An indirect injection diesel engine delivers fuel into a chamber off the combustion chamber, called a prechamber, where combustion begins and then spreads into the main combustion chamber, assisted by turbulence created in the chamber. This system allows smoother, quieter running, and because combustion is assisted by turbulence, injector pressures can be lower, which in the days of mechanical injection systems allowed high-speed running suitable for road vehicles (typically up to speed of around 4,000 rpm). The prechamber had the disadvantage of increasing heat loss to the engine's cooling system and restricting the combustion burn, which reduced the efficiency by between 5-10% in comparison to a direct injection engine, and nearly all require some form of cold-start device such as glow plugs. Indirect injection engines were used widely in small-capacity high-speed diesel engines in automotive, marine and construction uses from the 1950s, until direct-injection technology advanced in the 1980s. Indirect injection engines are cheaper to build and it is easier to produce smooth, quiet running vehicles with a simple mechanical system, so such engines are still often used in applications which carry less stringent emissions controls than road-going vehicles, such as small marine engines, generators, tractors, and pumps. With electronic injection systems, indirect injection engines are still used in some road-going vehicles, but most prefer the greater efficiency of direct injection.
During the development of the high-speed diesel engine in the 1930s, various engine manufacturers developed their own type of pre-combustion chamber. Some, such as Mercedes, had complex internal designs. Others, such as the Lanova pre-combustion chamber, used a mechanical system to adjust the shape of the chamber for starting and running conditions. However, the most commonly-used design turned out to be the 'Comet' series of swirl chambers developed by Harry Ricardo, using a two-piece spherical chamber with a narrow 'throat' to induce turbulence. Most European manufacturers of high-speed diesel engines used Comet-type chambers or developed their own versions (Mercedes stayed with their own design for many years), and this trend continues with current indirect-injection engines.
Direct injection
Modern diesel engines make use of one of the following direct injection methods:
Distributor pump direct injection
The first incarnations of direct injection diesels used a rotary pump much like indirect injection diesels; however the injectors were mounted in the top of the combustion chamber rather than in a separate pre-combustion chamber. Examples are vehicles such as the Ford Transit and the Austin Rover Maestro and Montego with their Perkins Prima engine. The problem with these vehicles was the harsh noise that they made and particulate (smoke) emissions. This is the reason that in the main this type of engine was limited to commercial vehicles— the notable exceptions being the Maestro, Montego and Fiat Croma passenger cars. Fuel consumption was about fifteen to twenty percent lower than indirect injection diesels, which for some buyers was enough to compensate for the extra noise.
One of the first small-capacity, mass-produced direct-injection engines that could be called refined was developed by the Rover Group.[citation needed] The '200Tdi' 2.5-litre 4-cylinder turbo diesel (of 111 horsepower) was used by Land Rover in their vehicles from 1989, and the engine used an aluminum cylinder head, Bosch two-stage injection and multi-phase glow plugs to produce a smooth-running and economical engine while still using mechanical fuel injection.
This type of engine was transformed by electronic control of the injection pump, pioneered by Volkswagen Audi group with the Audi 100 TDI introduced in 1989. The injection pressure was still only around 300 bar, but the injection timing, fuel quantity, exhaust gas recirculation and turbo boost were all electronically controlled. This gave much more precise control of these parameters which made refinement much more acceptable and emissions acceptably low. Fairly quickly the technology trickled down to more mass market vehicles such as the Mark 3 Golf TDI where it proved to be very popular. These cars were both more economical and more powerful than indirect injection competitors of their day.
Common rail direct injection
In older diesel engines, a distributor-type injection pump, regulated by the engine, supplies bursts of fuel to injectors which are simply nozzles through which the diesel is sprayed into the engine's combustion chamber.
In common rail systems, the distributor injection pump is eliminated. Instead an extremely high pressure pump stores a reservoir of fuel at high pressure - up to 1,800 bar (180 MPa, 26,000 psi) - in a "common rail", basically a tube which in turn branches off to computer-controlled injector valves, each of which contains a precision-machined nozzle and a plunger driven by a solenoid, or even by piezo-electric actuators, which are found on experimental diesel race car engines.
Most European automakers have common rail diesels in their model lineups, even for commercial vehicles. Some Japanese manufacturers, such as Toyota, Nissan and recently Honda, have also developed common rail diesel engines.
Different car makers refer to their common rail engines by different names, e.g. DaimlerChrysler's CDI, Ford Motor Company's TDCi (most of these engines are manufactured by PSA), Fiat Group's (Fiat, Alfa Romeo and Lancia) JTD, Renault's dCi, GM/Opel's CDTi (most of these engines are manufactured by Fiat, other by Isuzu), Hyundai's CRDi, Mitsubishi's DI-D, PSA Peugeot Citroën's HDi (Engines for commercial diesel vehicles are made by Ford Motor Company), Toyota's D-4D, and so on.
Unit direct injection
Unit direct injection also injects fuel directly into the cylinder of the engine. However, in this system the injector and the pump are combined into one unit positioned over each cylinder. Each cylinder thus has its own pump, feeding its own injector, which prevents pressure fluctuations and allows more consistent injection to be achieved. This type of injection system, also developed by Bosch, is used by Volkswagen AG in cars (where it is called a Pumpe-Düse-System - literally "pump-nozzle system") and by Mercedes Benz (PLD) and most major diesel engine manufacturers in large commercial engines (CAT, Cummins, Detroit Diesel). With recent advancements, the pump pressure has been raised to 2,050 bar (205 MPa), allowing injection parameters similar to common rail systems.
Hypodermic injection injury hazard
Because many diesel engine fuel injection systems operate at extremely high pressure, there is a risk of injury by hypodermic injection of fuel, if the fuel injector is removed from its seat and operated in open air.
Labels: diesel engine
<< Home