Custom Search

Jan 20, 2007

Two-stroke diesel engines

A two-stroke cycle has also been used for some diesel engines. As the fuel is injected directly into the cylinder, the lubrication of the crankshaft must be independent in these engines. There is no mixing of lubricating oil into the fuel.

There are three patterns. Some modern designs differ from the gasoline two-stroke cycle in that they have intake and exhaust valves in the cylinder head, exactly like a four-stroke engine. In these engines, the two-stroke cycle is used to improve power-to-weight ratio and/or reduce the engine speed to increase reliability. This pattern, the Clark cycle, is common in truck, railroad locomotive and machinery engines.

Other engines have used the same ported arrangement as the gasoline two-stroke, although the charge air is generally delivered under pressure from a blower through ducting rather than through the crankcase. Examples are the Junkers Jumo 205 and Napier Deltic high-speed opposed piston engines.

A third pattern uses the induction method of the gasoline two-stroke, but with an exhaust valve in the cylinder head. Large marine diesels commonly use this arrangement. These engines commonly also use a crosshead bearing, which together with a sliding seal on the piston rod allows the air path to be separated from the crankshaft while still using the piston movement as an air pump.

The simpler stroke in the fully valved diesel two-stroke cycle is the compression stroke; both valves are closed, and the rising piston compresses the air, heating it. At the top of the stroke, diesel fuel is injected into the cylinder, where it ignites and burns. The hot, high pressure gases produced by the combustion push against the piston as it descends in the initial part of the second stroke, delivering power. At this point, both valves are still closed. When the piston nears the bottom of the stroke, the exhaust valve opens, and the exhaust gases, still under pressure, rush out. The intake valve then opens. Air under pressure rushes into the cylinder, blowing out the remainder of the exhaust gases. The exhaust valve closes at that point, and shortly after that, and at about bottom dead center, so does the intake valve.

If the crankcase is not used as an air pump, some other means of forced induction is required, and is often used for efficiency in any case. The intake air must be under pressure, since the engine does not have an induction stroke and cannot suck the air in by itself. A low-pressure supercharger (blower) is needed at minimum, but many are turbocharged. Crossley two-stroke diesels were equipped with "exhaust-pulse pressure-charging" whereby surplus air in the exhaust manifold was forced back into the cylinder by the exhaust-pulse from a neighbouring cylinder.

The diesel two-stroke generally lacks the inefficiency and pollution problems of the gasoline two-stroke, since no unburned fuel, only air, can get blown out of the exhaust valve before it closes. Also, there is no mixing of lubricant with the fuel.

Labels: , ,

eXTReMe Tracker