Supercharger
A supercharger (also known as a blower) is an air compressor used to force more air (and hence more oxygen) into the combustion chamber(s) of an internal combustion engine than can be achieved at ambient atmospheric pressure.
The additional mass of oxygen-containing air that is forced into the engine improves on its volumetric efficiency which allows it to burn more fuel in a given cycle - which in turn makes it produce more power. A supercharger can be powered mechanically by belt, gear, or chain-drive from the engine's crankshaft. It can also be driven by a gas turbine powered by the exhaust gases from the engine. Turbine-driven superchargers are correctly referred to as turbo-superchargers - or more commonly as turbochargers.
Types of supercharger
There are two main types of supercharger defined according to the method of compression, positive displacement and dynamic compressors. The former deliver a fairly constant level of boost regardless of engine speed (RPM), whereas the later deliver increasing boost with increasing engine speed.
Positive displacement
Positive displacement pumps deliver a nearly fixed volume of air per revolution at all speeds (minus leakage which is nearly constant at all speeds for a given pressure and so its importance decreases at higher speeds). The device divides the air mechanically into parcels for delivery to the engine, mechanically moving the air into the engine bit by bit.
Major types of positive displacement pumps include:
* Roots
* Lysholm screw
* Sliding Vane
* Scroll-type supercharger, also known as the G-lader
* Piston
* Wankel
Positive displacement pumps are further divided into internal compression and external compression types.
Roots superchargers are typically external compression only (although high helix roots blowers attempt to emulate the internal compression of the Lysholm screw).
* External compression refers to pumps which transfer air at ambient pressure into the engine. If the engine is running under boost conditions, the pressure in the intake manifold is higher than that coming from the supercharger. That causes a back flow from the engine into the supercharger until the two reach equilibrium. It is the back flow which actually compresses the incoming gas. This is a highly inefficient process and the main factor in the lack of efficiency of roots superchargers when used at high boost levels. The lower the boost level the smaller is this loss and roots blowers are very efficient at moving air at low pressure differentials, which is what they were first invented for (hence the original term "blower").
All the other types have some degree of internal compression.
* Internal compression refers to the air being compressed within the supercharger itself and this compressed air, already at or close to boost level, can be delivered smoothly to the engine with little or no backflow. This is more efficient than backflow compression and allows higher efficiency to be achieved. Internal compression devices usually use a fixed internal compression ratio. When the boost pressure is equal to the compression pressure of the supercharger, the backflow is zero. If the boost pressure exceeds that compression pressure, backflow can still occur as in a roots blower. Internal compression blowers must be matched to the expected boost pressure in order to achieve the higher efficiency they are capable of, otherwise they will suffer the same problems and low efficiency of the roots blowers.
Positive displacement superchargers are usually rated by their capacity per revolution. In the case of the roots blower, the GMC rating pattern is typical. The GMC types are rated according to how many two stroke cylinders, and the size of those cylinders, it is designed to scavenge. GMC has made 2-71 3-71 4-71 and the famed 6-71 blowers. For example a 6-71 blower is designed to scavenge 6 cylinders of 71 cubic inches each and would be used on a two-stroke diesel of 426 cubic inches which is designated a 6-71 and the blower takes this same designation. However because 6-71 is actually the engines designation,the actual displacement is less than the simple multiplication would suggest. A 6-71 actually pumps 339 cubic inches per revolution.
Aftermarket derivatives continue the trend with 8-71 to current 14-71 blowers. From this you can see that a 6-71 is roughly twice the size of a 3-71. GMC also made -53 cubic inch series in 2,3,4,6 and 8-53 sizes as well as a “V71” series for use on engines using a V configuration.
Roots Efficiency map
For any given roots blower running under given conditions, a single point will fall on the map. This point will rise with increasing boost and will move to the right with increasing blower speed. It can be seen that at moderate speed and low boost the efficiency can be over 90%. This is the area in which roots blowers were originally intended to operate and they are very good at it.
Boost is given in terms of pressure ratio which is the ratio of absolute air pressure before the blower to the absolute air pressure after compression by the blower. If no boost is present the pressure ratio will be 1.0 (meaning 1:1) as the outlet pressure equals the inlet pressure. 15 psi boost is marked for reference (slightly above a pressure ratio of 2.0 compared to atmospheric pressure). At 15 psi boost Roots blowers hover between 50% to 58%. Replacing a smaller blower with a larger blower moves the point to the left. In most cases, as the map shows, this will moves it into higher efficiency areas on the left as the smaller blower likely will have been running fast on the right of the chart. Usually, using a larger blower and running it slower to achieve the same boost will give an increase in compressor efficiency.
The volumetric efficiency of the roots type blower is very good. Usually staying above 90% at all but the lowest blower speeds. Because of this, even a blower running at low efficiency will still mechanically deliver the intended volume of air to the engine but that air will be hotter. In drag racing applications where large volumes of fuel are injected with that hot air, vaporizing the fuel absorbs the heat. This functions as a kind of liquid after cooler system.
Dynamic
Dynamic compressors rely on accelerating the air to high speed and then exchanging that velocity for pressure by diffusing or slowing it down.
Major types of dynamic compressor are:
* Centrifugal
* Multi stage axial flow
-Comprex superchargers do not fit neatly into either dynamic or positive displacement categories. The Comprex design uses the exhaust gas to directly compress the incoming charge.
Supercharger drive types
Superchargers are further defined according to their method of drive (mechanical - or turbine).
Mechanical:
* Belt(V belt, Toothed belt, Flat belt)
* Direct drive
* Gear drive
* Chain drive
Exhaust gas turbines:
* Axial turbine
* Radial turbine
All types of compressor may be mated to and driven by either gas turbine or mechanical linkage. Dynamic compressors are most often matched with gas turbine drives due to their similar high-speed characteristics, while positive displacement pumps usually use one of the mechanical drives. However, all of the possible combinations have been tried with various levels of success.
Automobiles
In cars, the device is used to increase the "effective displacement" and volumetric efficiency of an engine, and is often referred to as a blower. By pushing the air into the cylinders, it is as if the engine had larger valves and cylinders, resulting in a "larger" engine that weighs less.
In 1900 Gottlieb Daimler (of Daimler-Benz / Daimler-Chrysler fame) became the first person to patent a forced-induction system for internal combustion engines. His first superchargers were based on a twin-rotor air-pump design first patented by American Francis Roots in 1860. This design is the basis for the modern Roots type supercharger.
It wasn't long before the supercharger was applied to custom racing cars, with the first supercharged production vehicles being built by Mercedes and Bentley in the 1920s. Since then superchargers (as well as turbochargers) have been widely applied to both racing and production cars, although their complexity and cost have largely relegated the supercharger to pricey performance cars.
Boosting, or adding a supercharger to a stock naturally-aspirated engine, has made a comeback in recent years due largely to the increased quality of the alloys and machining used in modern engines. In the past, boosting would dramatically shorten engine life due to the extreme temperature and pressure created by the supercharger, but modern engines produced with modern materials provide considerable overdesign; thus, boosting is no longer a serious reliability concern. For this reason boosting is commonly used in smaller cars, where the added weight of the supercharger is less than the weight of a larger engine delivering the same amount of power. This also results in better gas mileage, as mileage is often a function of the overall weight of the car, a sizeable percentage of which is weight of the engine. Nevertheless, adding boost to a car will often void the drivetrain warranty. Also, improperly installed or excessive boost will greatly reduce the life expectancy of the engine, the differential and transmission (which may not have been designed to cope with additional torque).
Supercharging and Turbocharging
The term supercharging technically refers to any pump that forces air into an engine - but in common usage, it refers to pumps that are driven directly by the engine as opposed to turbochargers that are driven by the pressure of the exhaust gasses.
Positive displacement superchargers may absorb as much as a third of the total crankshaft power of the engine, and in many applications are less efficient than turbochargers. In applications where engine response and power is more important than any other consideration, such as top-fuel dragsters and vehicles used in tractor pulling competitions, positive displacement superchargers are extremely common. Superchargers are generally the reason why tuned engines have a distinct high-pitched whine upon acceleration. Cars that whine in this way include the Ford Mustang Cobra, Mercedes SLR and the MINI Cooper S.
There are three main styles of supercharger for automotive use:
* Centrifugal turbochargers - driven from exhaust gasses.
* Centrifugal superchargers - driven directly by the engine via a belt-drive.
* Positive displacement pumps (such as the Roots and the Lysholm (Whipple) blowers).
The thermal efficiency, or fraction of the fuel/air energy that is converted to output power, is less with a mechanically driven supercharger than with a turbocharger, because turbochargers are using energy from the exhaust gases that would normally be wasted. For this reason, both the economy and the power of a turbocharged engine are usually better than with superchargers. The main advantage of an engine with a mechanically driven supercharger is better throttle response, as well as the ability to reach full boost pressure instantaneously. With the latest Turbo Charging technology, throttle response on turbocharged cars is nearly as good as with mechanical powered superchargers, but the existing lag time is still considered a major drawback. Especially considering that the vast majority of mechanically driven superchargers are now driven off clutched pulleys, much like an air compressor.
Roots blowers tend to be 40-50% efficient at high boost levels. Centrifugal Superchargers are 70-85% efficient. The Lysholm style blowers are nearly as efficient as their Centrifugal counterparts.
Keeping the air that enters the engine cool is an important part of the design of both superchargers and turbochargers. Compressing air makes it hotter - so it is common to use a small radiator called an intercooler between the pump and the engine to reduce the temperature of the air.
Picking any method of compression that cannot support the mass of airflow needed for the engine creates excessive heat in the air/fuel charge temperatures. This is true with all forms of supercharging. It is critical to not undersize the component.
Turbochargers also suffer (to a greater or lesser extent) from so-called turbo-lag in which initial acceleration from low RPM's is limited by the lack of sufficient exhaust gas pressure. Once engine RPM is sufficient to start the turbo spinning, there is a rapid increase in power as higher turbo boost causes more exhaust gas production - which spins the turbo yet faster, leading to a belated "surge" of acceleration. This makes the maintenance of smoothly increasing RPM far harder with turbochargers than with belt-driven superchargers which apply boost in direct proportion to the engine RPM.
Turbo-lag is often confused with the term Turbo-spool. Turbo Lag refers to how long it takes to spool the turbo when there is sufficient engine speed to create boost. This is greatly affected by the specifications of the turbocharger. If the turbocharger is too large for the powerband that is desired, needless time will be wasted trying to spool the turbocharger.
By correctly choosing a turbocharger for its use, response time can be improved to the point of being nearly instant. Many well-matched turbochargers can provide boost at cruising speeds.
Centrifugal turbochargers suffer from a form of turbo spool. Due to the fact that the turbine speed is directly proportional to the RPM, pressure and flow output at low RPM is limited, thus it is possible for the demand to outweigh the supply and a vacuum is created until the turbine reaches its compression threshold.
Sequential, Twin and Compound turbochargers
Many efforts have been made to mitigate the effects of turbo-lag in exhaust-driven turbochargers.
Sequential Turbo Charging was used on the Toyota Supra. The MKIV Toyota Supra uses two equally sized turbos. At low RPMs the exhaust gas is flowed through solely the first turbo. Once the boost pressure reaches a pre-set level, the exhaust gas flow is directed through both turbos equally. These two small turbos are then operating in parallel.
An alternative arrangement utilizes two turbochargers of the same size, known as a "Twin-turbo". Twin Turbo Charging can make more power than a single turbo of the same output for two reasons. One is the lower rotating mass of two smaller turbos versus one large turbo, which allows the compressor to spin up to speed much more quickly. The second is the increased exhaust outlet area available for the exhaust gas to flow out of the twin turbo exhaust manifold. Increased exhaust flow will increase power in most situations.
Another style of turbo charging is called "Compound Turbo charging". This is gaining popularity for diesel engines. Tractor engines which compete in tractor pulling use compound turbo charging in some classes. Compound Turbo Charging can create boost levels above 200psig. Compound turbochargers are set up in various fashions. The most popular set up is to use one smaller and one larger turbo. The larger turbo compressor blows into the smaller turbo compressor. The exhaust is set up to first enter the turbine of the smaller turbo, and then into the turbine of the larger turbo. Compound Turbo Charging has little "turbo lag" and can create high power levels.
There are also acts of combining both turbocharging, and a positive displacement supercharger. By compressing air first in the turbocharger, and feeding it to the supercharger. By running more compression in the turbocharger, efficiency is improved as superchargers are less efficient.
Still other combinations are possible - there are after-market kits for several supercharged cars to add a turbocharger either before, after or in parallel with the supercharger. In this manner the supercharger operates alone at lower RPM's and the turbo either takes over from - or adds to the supercharger once there is sufficient exhaust gas pressure available.
<< Home